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ABSTRACT

The first temperature derivatives of the fundamental elastic constants

of quartz are employed along with the thermally-induced biasing strains in

the equation for the first perturbation of the eigenvalue for the linear

electroelastic equations for small fields superposed on a bias to calculate

the resulting change in surface wave velocity with temperature. Since the

description employed is referred to a fixed reference state, the geometry

,, , does not ch_*nMa and the temperature coefficient of velocity is the negative

of the temperature coefficient of delay. In all earlier work a variable

temperature dependent geometric state was considered, but the attendant

shearing or skewing of the coordinate axes was not properly included. The

temperature dependence of the velocity of surface waves propagating in

various directions on various cuts of quartz is obtained. For cases in

which measurements are available the calculations are shown to be in sub-

stantially better agreement with the measurements than previous calculations.
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1. Introduction

1 Previous work 1 ' 2 on the temperature dependence of the velocity ofV surface waves in quartz has employed the temperature derivatives of the

effective elastic constants of quartz, which are referred to the variable

temperature dependent intermediatd position rather than the fixed reference

position, to which the fundamental elastic constants are referred. Not only

does the intermediate coordinate system extend or contract under a tempera-

ture change, but it shears or skews as well. This shearing or skewing ofT3

the axes was omitted in the original determination3 of the temperature

derivatives of the effective elastic constants. Although, in the existing

treatments 12 of the temperature dependence of surface wave velocity, the

change in density and path length were properly included, the shearing or

skewing of the coordinate axes was omitted.

Recently, the first temperature derivatives of the fundamental elastic

constants of quartz were determined4 from the original data3 from which the

* 3
temperature derivatives of the effective constants had been obtained . Also,

a perturbation analysis of the linear electroelastic equations for small

fields superposed on a bias 5 has been performed6 and the equation for the

first perturbation of the eigenvalue has been obtained. The aforementioned

first temperature derivatives of the fundamental elastic constants of quartz

are employed along with the thermally-induced biasing strains in the equation

6for the first perturbation of the eigenvalue to calculate the resulting

change in surface wave velocity with temperature.

Since the description employed is referred to the fixed reference state

at the reference temperature, the mass density and geometry do not change and

the temperature coefficient of natural velocity, which we determine, is the

negative of the temperature coefficient of delay. The temperature dependence

ix II-



2.

of the actual, in addition to that of the natural, velocity of surface waves

on a number of cuts of quartz is obtained and compared with the previous

calculations as well as measured values. In addition, the temperature

coefficient of delay and the associated power flow angle are calculated as

a function of propagation direction for two interesting orientations of

quartz substrates. All results obtained here are limited to linear behavior

with temperature because only the first temperature derivatives of the

fundamental elastic constants of quartz are known 4 . As noted in an earlier

work7 the surface wave velocity can also be obtained simply by solving the

appropriate linear surface wave boundary value problem in the usual manner

at both the reference temperature and present temperature when the tempera-

ture dependent constants have been determined at the present temperature.

'The perturbation procedure is being employed here because it enables the

change in surface wave velocity to be calculated directly thereby resulting

in greater accuracy for the same number of significant figures and a sub-

stantial reduction in computer time.

2. Linear Electroelastic Equations for Small Fields Superposed

on a Thermally Induced Bias

The linear electroelastic equations for small fields superposed on a

bias may be written in the form5 6

y'Y L , (2.1)

where, since only mechanical nonlinearities are of interest here,

h L-eu - eLM P (2.2)

. ... iT Nli [ ..
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and

G "LyN + + (d/dT) (T - T

c yMT 6 y+c E ag + Lymv xc2 V (2.3)

of electrostatics referred to the position coordinates of material points

before the thermally induced static deformation is applied, which are called

reference coordinates and are denoted by Y.. Equations (2.2) are the linear

electroelastic constitutive equations and Eqs. (2.3) contain the definitions

associated with the effective elastic coefficients appearing in (2.2). In

(2.1) - (2.3) K,' L and u denote the components of the small field Piola-

Kirchhoff stress tensor which is asymmetric, reference electric displacementf
0

vector, and mechanical displacement vector, respectively; p and p denote

the reference mass density and small field electric potential, respectively,

*LYMV and gLY,4VAB denote the second and third order elastic constants,

respectively, eLM and e denote the piezoelectric and dielectric constants,

respectively, and T and T denote the reference and present temperature,0

respectively.

In this description the present position of material points is re-

lated to the reference position X by

(XL, t) =X+w(XL) +u(XL, t) , (2.4)

where w denotes the displacement due to the thermally induced static deforma-

1 1
tion. In (2.3) 1and E denote the components of the thermally induced

static biasing stress and strain, respectively, and for small strains and

changes in temperature from the reference temperature T, we have4

b.0

L.i - ... ,N 2' :
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W B(w +wB) (2.5)
AD3 2 AYE BA

TM - ,(,- ) , (2.6)

where V LM denotes the thermoelastic coupling coefficients, which are related

to the usual coefficients of linear thermal expansion aJK by

vim = CLIJeJK" (2.7)

The upper cycle notation for many dynamic variables and 4-he capital Latin

and lower case Greek index notation are being employed for consistency with

the notation of Refs.5 and 6, as is the remainder of the notation in this

section. The fact that the capital Latin and lower case Greek indices refer

to the reference and intermediate position coordinates, respectively, is not

important here and in this work they may be used interchangeably. We employ

Cartesian tensor notation, the summation convention for repeated tensor

indices, the convention that a comma followed by a Latin index denotes

partial differentiation with respect to reference coordinates and the dot

notation for differentiation with respect to time. Since we are considering

a homogeneous stress free biasing state resulting from a homogeneous temper-

ature change (T-T0 ), from (2.6) and (2.7) we obtain

1  aRs (T-T O) . (2.8)RS0

4|
Since it has been shown4 that a static homogeneous infinitesimal rigid rota-

tion has no influence on any results, without any loss in generality we may

choose the homogeneous rigid rotation to vanish and substitute from (2.8)

into (2.3)2 to obtain

1" ". RE ( + O. K + Lm4,% ) (T - T) (2.9)
12
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3. Perturbation Equations

For purely elastic nonlinearities, which are the only ones of interest

here, the equation for the first perturbation of the eigenvalue obtained from

the perturbation analysis mentioned in the Introduction may be written in

the form

AV/V1 =H/2g2V1 , V=V1 +AV (3.1)

where V1 and V are the unperturbed abd perturbed surface wave velocities at

T and TY respectively, is the unperturbed propagation wavenumber and0

HI = + I ~Y V (3.2)

where R is the volume enclosed in a wavelength in a unit length of the sur-

face wave from the top of the substrate down. In (3.2) g denotes the nor-

malized mechanical displacement vector, and K denotes the portion of the

Piola-Kirchhoff stress tensor resulting from the biasing state and the change

in the elastic constants A LYML with temperature in the presence of the g,

and is given by

( +tc g (3.3)
KY - LYI~ 21;YlbaM

where

ALc = (dc /dT) (T-T o ) , (3.4)

2 LYMC 2LY MCI 0

and the dc M,/dT are the first temperature derivatives of the fundamental
2 L

elastic constants of quartz, which are tabulated in Ref. 4. The normalized

eigensolution g and f is defined by

g" f N N (3.5)

V



7. 6.

where and t are the mechanical displacement and electric potential,

respectively, which satisfy the equations of linear piezoelectricity, i.e.,

Eqs.(2.1) and (2.2), with (2.3) and (2.9), at T=T subject to the boundary

conditions

NLIy = 0, -N e atNLXL=0, (3.6)

at T=T ,the first of which, with (2.2)1, (2.3) and (2.9), takes the form

N (c u +e CP)=0. (3.7)L 2LYMv V,M MLY,)M

9
The second equation in (3.6) is a consequence of Laplace's equation in free

space, the two electrical continuity conditions at the surface of the sub-

strate and the form of the surface wave solution appearing in (4.1). In

(3.6) and (3.7) NL denotes the unit normal to the free surface of the sub-

strate at T=T and e is the permittivity of free space.0 0

4. Temperature Dependence of Surface Wave Velocity

A schematic diagram of the free surface of the substrate at the refer-

ence temperature T= T is shown in Fig.l. The solution for surface waves0

propagating in the X -direction may be written in the formT

4~ m (m) (m) io m §XV i( (X-V 1t)
= (I ) ,B )e e , (4.1)

in=l

where the unperturbed surface wave velocity V1 at T=T is determined numer-

ically by trial and error so that (2.1) and (3.6), with (2.2), (2.3) and (2.9), at

10-12T = T are satisfiedI  . When V1 is obtained the equations determine the

OM ) B and C . Since the straight-crested surface wave solution

depends only on the two coordinates X and XV, for integration over a wave-

length Eq. (3.2) takes the somewhat reduced form

1! .
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co rr/g

Hl=-idX j dXF g +iPg +K g
0 LTT TT TV V9T Ta a T

+ Vn , +K 4+. ) 
VT TV vvgJ vv + Y-aa, v] 42

where X denotes the axis normal to X and X and in (4.2) we have introduced

the convention that repeated Greek indices are not to be summed. For this

case of surface waves the normalization integral in (3.5)3 takes the form

N2=O 0v I x  T= N 4 N c(m)(m)c(n)' (n)
N2= po dX V (4.3)- m=l m n

where the * denotes complex conjugate. The substitution of (4.1) and (4.3) into

(3. 5)1 which, with (2.9) and (3.4), is then substituted into (3.3), which is

then substituted along with (3.S) 1 into (4.2), the integration of which

yields the expression for H., which enables the change in surface wave

velocity to be calculated from (3.1). The resulting expression for HI is

extremely lengthy and not terribly revealing. Consequently, we do not

bother to present it here. Nevertheless, it is clear from (4.2) and (3.3),

with (3.4) and (2.9), along with (3.5)1, (4.1) and (4.3) that the resulting

expression for H1 is linear in (T-T ), depends on the second
1 3 and third14

15
order elastic constants, the coefficients of linear expansion and the recently

determined4 first temperature derivatives of the fundamental elastic constants

of quartz, as well as on the known surface wave solution at T= T which

13
depends on the linear piezoelectric constants 

.

The change in velocity AV determined from (3.1) is the change in

16
natural velocity, which is related to the measured unchanged geometry at

-T= T . Since it is not feasible to continually measure the changing lengths

with temperature and time intervals are usually measured rather than the
T 1*,

-
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actual velocity of the wave, the natural velocity16 is the most purposeful

one to define. However, since previous workers have employed the change in

actual velocity calculated from the measurements, we will calculate the

change in actual velocity from the change in natural velocity. The relation

between them is 17

a +E 1 T no sum, (4.4)

where the repeated Greek indices in (4.4) are not to be sued and AV isa

the change in actual velocity as defined in the Appendix. Since reference

coordinates and natural velocity are employed here, the geometry remains

fixed and the temperature coefficient of delay (TCD) is given by

TCD- Ar/T (T-T) - - V/V (T- T) (4.5)

where T is the delay time. Equation (4.5) shows that when reference coordi-

nates and natural velocity are employed, the temperature coefficient of delay

is simply the negative of the temperature coefficient of velocity. Substi-

tuting from (4.4) into (4.5) and employing (2.8), we obtain

TCD a -Va/V 1 (T-T 0 ) +OTT, T no sum, (4.6)

which is the well-known usual relation between the TCD and the temperature

coefficient of actual velocity referred to the variable temperature dependent

intermediate configuration of the crystal.

Calculations have been performed for various propagation directions on

various orientations of quartz substrates and the results are plotted in

Figs.2- 8. Figures 2 and 3 show the TCD and AVa/VI(T - T ) as a function of
i.

propagation direction for surface waves on AT-cut and AC-cut quartz substrates,

respectively, at 250C. The dotted curve shows the average of the calculated

values at 0°C and 50PC from Ref.1 and the circles are the average of the

experimental values at 00C and 50PC also from Ref.l. It is clear from

1b
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Figs.2 and 3 that the calculations performed here using the proper nonlinearly

based formalism are in substantially better agreement with the experimental

data of Ref.1 than the calculations performed in Ref.1 using an incomplete

linearly based description. Figure 4 shows the calculated TCD for surface

waves propagating along the digonal axis of rotated Y-cut quartz substrates

as a function of rotation angle at 25C. The dotted curve is obtained from

the calculations of Ref.i in the same manner as in Figs.2 and 3. Figures 5

and 6 show the calculated TCD as a function of propagation direction for

surface waves on X-cut and Y-cut quartz substrates, respectively, at 290C.

The dotted curves are obtained from the calculations of Ref. 1 in the same

manner as in Figs.2 and 3. Figures 7 and 8 show the temperature coefficient

of delay and associated power flow angle as a function of propagation direc-

tion for two particularly interesting orientations of doubly-rotated quartz

substrates, namely those having18 q- 30P, e - 34.25" and cp-5, e - 47.7,

respectively.
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FIGURE CAPTIONS

Figure 1 Schematic Diagram Showing the Free Surface of a Semi-
Infinite Solid

Figure 2 Temperature Coefficients of Actual Velocity and Delay for
Surface Waves on AT-Cut Quartz as a Function of Propagation
Direction Relative to the Digonal Axis at 25C. The dotted
curve shows the average of the calculated values at 00C and
500C from Ref.l. The circles are the average of the experi-
mental values at 00C and 50°C from Ref.1

Figure 3 Temperature Coefficient of Actual Velocity and Delay for
Surface Waves on AC-Cut Quartz as a Function of Propagation
Direction Relative to the Digonal Axis at 250C. The notation
convention is the same as in Fig.2.

Figure 4 Temperature Coefficient of Delay for Surface Waves Propa-
gating along the Digonal Axis of Rotated Y-Cuts of Quartz
as a Function of Rotation Angle at 25 0 C. The notation convention
is the same as in Fig.2.

Figure 5 Temperature Coefficient of Delay for Surface Waves on X-Cut
Quartz as a Function of Propagation Direction Relative to
the Y-Axis at 25 0 C. The notation convention is the same
as in Fig.2.

* Figure 6 Temperature Coefficient of Delay for Surface Waves on Y-Cut
Quartz as a Function of Propagation Direction Relative to
the X-Axis at 25°C. The notation convention is the same
as in Fig.2.

Figure 7 Temperature Coefficient of Delay and Power Flow Angle as a
Function of Propagation Direction Relative to the Axis of
Second Rotation at 25°C for the Doubly-Rotated Cut of
Quartz Having =5, 8 =47.f.

Figure 8 Temperature Coefficient of Delay and Power Flow Angle as
a Function of Propagation Direction Relative to the Axis
of Second Rotation at 250C for the Doubly-Rotated Cut of
Quartz Having cp- 30, 9 =34.250.

Figure 9 Schematic Diagram Showing the Relation Between the Surface
Normal and Surface Wave Propagation Direction and Wave-
length in the Undeformed Reference State at Temperature T

I. and the Deformed State at Temperature T. o

1 N.
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APPENDIX

In this Appendix we derive the relation between the change in actual

and change in natural velocity for surface waves. The procedure employed

follows that of Thurston1 9 who treated plane waves. The treatment of the

surface wave case is a bit more cumbersome because of the existence of the

free surface. Consequently, in this Appendix the distinction between capital

Latin and lower case Greek indices is important.

Let V and a be unit vectors normal to the surface and in the direction

of the phase fronts of the surface wave, respectively, both at temperature T,

as shown in Fig.9. Clearly, then the propagation direction rt is given by

*n- VX a,Tr- eV a (Al)

where e 10 is a skew-symmetric tensor. In the undeformed state at tempera-

ture T the unit vectors v and a were in the directions N and S respectively,
0 respctiely

in Fig. 9. We denote the vector orthogonal to N and S by P, which is in the

natural propagation direction, and we write

PN XS P p=E NBS (12)

where E am is a skew-syzaetric tensor. In the deformation accompanying the

temperature change from T to T the line element in the direction P at T
0 - 0

takes the direction k at T, which in general differs from the direction n.

The intermediate directions v, 7 and tk may be expressed in terms of the

reference directions N, S and P by means of the relations
20

v NXL., a~4L=- (A.3)
VY B(N) , y (S) C(P)

where

1* -

b° | -
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r.2

B (I) (S) (P c -CM

and

where = = (XR ) is the intermediate coordinate at T and is related to the

quantities appearing in (2.4) by

M 6 5 (XL+ wL), (6)

where 6L is a Kronecker delta, which is required for consistency with the

5
notation employed and a co ma followed by a Greek index, say 0, denotes

partial differentiation with respect to the intermediate coordinate

y. Substituting from (A3) into (Al), we obtain

'Y ' =eYcALXL, Ko SKIB ()C (S (A7)

which is clearly different from (A3)3.

Since the natural (or reference) wavelength L is in the direction P,

from deformation theory20 and (M)3 we have

an y (A ) , eK , (AS)

where I is the deformed length that was L when undeformed and

A- C(M L. (A9)

Inasmuch as L is the undeformed (or reference) distance between two phase

fronts, A is the deformed line between the same two (deformed) phase fronts,

which, however, is not normal to the phase fronts because

Since the distance between two deformed phase fronts normal to the phase

fronts is the actual wavelength X, the component of I in the direction n is

I n - nI I



A3.

the actual wavelength 19, and we have

X Mk.y. (All)

Substituting from (A7) and (AS) into (All) and rearranging terms, we obtain

(N) CS)
x yaK YNPNSKLXL'o/B C . (A12)

Utilizing the well-known relations
20

1 6fY9jRO, -8_l"M (A13)

we obtain
ey K, = J1 s, ER4 (A14)

* where, of course

J 1 det §C,T. (A15)

Substituting from (A14) into (A12) and rearranging terms, we obtain

X=t7ERMSXPMXR X, aNL/B (N) C (S) (A16)

which, with

SXP-N E S P N A7
- .p -K K' Ri M R'(&)

and (M)11 and (AS) 2 , yields

X = LJB (N)/C (S) (AlS)

which holds for arbitrarily large deformations. Before reducing to infinites-

imal deformations we record the well-known relation

1 1 (Cm - ).M)  (A19)

When the deformation is infinitesimal and terms higher than linear in

WL,R may be ignored, from (AS), (A6) and (A19) we obtain

iN•



A4

1 1
- K1 ( , + 14 -, (A20)

CDM= 6  +21 -1 -2 1(A1

Substituting from (A21) into (A4), utilizing the fact that N, S and P are

unit vectors and making a Taylor expansion of the radicals while retaining

only linear terms, we obtain

B(N) IE(N)l (S) (S)l (P) +E(P)(B l- C mlI+E , C =li , (A22)

where

E(N) 1 (S) 1 1 (P) 1E N I M B SIE MSDIPO M' (A23)

and E , I and E are the extensional strains in the directions

N, S and P, respectively. Similarly, substituting from (A6) into (AI5),

expanding, retaining only linear terms inwLR and employing (A20), the

invariance of the trace of the strain tensor and (A23), we obtain

1 (N)l1 (3)1 (P)l1
I =I+E +E +E). (A24)

Finally, substituting from (A22) and (A24) into (AI8), making a Taylor ex-

pansion in the B (S)I multiplying out and retaining only linear terms in
(.)l

the E , we obtain

X-L(I+E ( P ), (A25)

which is the equation that has always been employed without a complete

demonstration of its validity. Since the frequency is the same whether the

reference coordinates X at T or the deformed coordinates at T are

*, employed, we have

V a/ - V/L , (".6)

-m _ _I -



A5

where V is the actual velocity and V is the natural velocity of the surface
a

! wave. Since

a s v1 +Mv, viv1 + &v, (A27)

where V1 is the unperturbed velocity at T and both AV and AV are small

compared with V., from (A25) - (A27), we have

AVa AV) (P)l1- V 7' + E(A28)Viv i

because E (P )I << 1. Equation (A28) is Eq. (4.4).

Since we have presented the treatment in this Appendix leading to

Eq. (A18), from which we have obtained the reduced form (A25) for the case

of infinitesimal strain, for completeness we record without proof the

limiting forms of v,2 , and r for the case of infinitesimal strain. When

we ignore the distinction between lower case Greek and capital Latin indices

these forms are;

V Lm" N K[ KL (1 + E (N) 1 W X, LI Y

1 S8K(1-E(S)I +w

PC PLK[SKL 1(1 -E(P) +wLK '

n- -SSw P +NNw(A9
L LMKK L LLNM, (A9)

I.


